Wahl von Schutzsystemen

Aus Planungskompendium Energieverteilung

Wechseln zu: Navigation , Suche
Achtung! Dieses Kapitel wird gerade überabeitet, so dass Sie auf vorübergehende Unstimmigkeiten oder nicht funktionierende Verlinkungen stoßen können. Wir bemühen uns, die Arbeiten so schnell als möglich durchzuführen und die Auswirkungen für den Nutzer so gering als möglich zu halten. Wir danken für Ihr Verständnis!

Allgemeine Planungsgrundlagen – Bestimmungen – Installierte Leistung
Anschluss an das Hochspannungs-Versorgungsnetz des Netzbetreibers
Anschluss an das NS-Verteilnetz des Netzbetreibers
Auswahlhilfe HS- und NS-Verteilnetzarchitektur
Verteilsysteme in NS-Verteilnetzen
Schutz gegen elektrischen Schlag
Schutz von Stromkreisen
Schaltgeräte
Schutz bei Überspannungen und Stoßüberspannungen
Energieeffizienz in elektrischen Verteilnetzen
Blindleistungskompensation und Filterung von Oberschwingungen
Oberschwingungserfassung und - filterung
Stromversorgungen und Verbraucher besonderer Art
Solaranlagen
Wohngebäude und ähnliche Einsatzbereiche sowie besondere Orte und Bereiche
EMV-Richtlinien
Messung

Inhaltsverzeichnis


Die Leistungsschalter spielen eine wichtige Rolle in einer Anlage, wobei ihre Bedeutung meistens erst bei Auftreten von (nicht häufigen) Störungen zum Vorschein kommt. Eine optimal dimensionierte USV-Anlage und eine optimal ausgewählte Konfiguration kann durch nur einen falsch ausgewählten Leistungsschalter beeinträchtigt werden.

Auswahl der Leistungsschalter

Abbildung N25 veranschaulicht die Wahl des richtigen Leistungsschalters.

Abb. N25Leistungsschalter sind verschiedenen Betriebssituationen ausgesetzt

Bemessungsstrom

Der gewählte Bemessungsstrom für den Leistungsschalter muss so gewählt werden, dass er den Schutz des nachgeschalteten Kabels sicherstellt und den ordnungsgemäßen Betrieb der nachgeschalteten Anlage ermöglicht.

Ausschaltvermögen

Das gewählte Ausschaltvermögen muss über dem Kurzschlussstrom liegen, der am Einbauort auftreten kann.

Grenzwerte für Ir und Im/Isd

Mit Hilfe untenstehender Tabelle können die Grenzwerte für Ir (Überlast; thermisch oder langzeitig) und Im/Isd (Kurzschluss; magnetisch oder kurzzeitig) bestimmt werden, um eine Selektivität in Abhängigkeit von den vor- und nachgeschalteten Auslösesystemen zu gewährleisten.

Anmerkung (siehe Abb. N26)

  • Zeitselektivität muss von qualifiziertem Personal eingerichtet werden, denn zeitverzögerte Auslösungen erhöhen die thermische Belastung (I2t) für nachgeschaltete Komponenten (Kabel, Halbleiter usw.). Vorsicht ist geboten, wenn die Auslösung an LS2 zeitverzögert wird und somit den statischen Schalter nicht mehr gegen Überlast und Kurzschluss schützt.
  • Energieselektivität ist nur von dem eingesetzten Leistungsschalter abhängig, nicht vom Auslösesystem.
  • Stromselektivität erreicht man im Allgemeinen mit Hilfe der nachstehenden Verhältnisse:
Typ des nachgeschal-
teten Stromkreises
Verhältnis Einspeise-/Abgangs-Einstellungen
Ir vorgeschaltet/
Ir nachgeschaltet
Im/Isd vorgeschaltet/
Im/Isd nachgeschaltet
Im/Isd vorgeschaltet/
Im/Isd nachgeschaltet
Nachgeschaltetes
Auslösesystem
Alle Typen Magnetisch Elektronisch
Verteilung > 1,6 > 2 > 1,5
Asynchronmotor > 3 > 2 > 1,5

Abb. N26Grenzwerte für Ir und Im/Isd in Abhängigkeit von den vor- und nachgeschalteten Auslösesystemen

Sonderfall Generatorkurzschluss

Abb. N27 veranschaulicht die Reaktion eines Generators auf einen Kurzschluss. Um Fragen bezüglich des Erregungstyps auszuschließen, findet die Auslösung bei der ersten Spitze statt (3 bis 5In gemäß X”d) mit der Im/Isd-Schutzeinstellung ohne Zeitverzögerung.

Abb. N27Generator während eines Kurzschlusses