Hauptmerkmale von Stoßüberspannungen

Aus Planungskompendium Energieverteilung

Wechseln zu: Navigation , Suche
Achtung! Dieses Kapitel wird gerade überabeitet, so dass Sie auf vorübergehende Unstimmigkeiten oder nicht funktionierende Verlinkungen stoßen können. Wir bemühen uns, die Arbeiten so schnell als möglich durchzuführen und die Auswirkungen für den Nutzer so gering als möglich zu halten. Wir danken für Ihr Verständnis!

Allgemeine Planungsgrundlagen – Bestimmungen – Installierte Leistung
Anschluss an das Hochspannungs-Versorgungsnetz des Netzbetreibers
Anschluss an das NS-Verteilnetz des Netzbetreibers
Auswahlhilfe HS- und NS-Verteilnetzarchitektur
Verteilsysteme in NS-Verteilnetzen
Schutz gegen elektrischen Schlag
Schutz von Stromkreisen
Schaltgeräte
Schutz bei Überspannungen und Stoßüberspannungen
Energieeffizienz in elektrischen Verteilnetzen
Blindleistungskompensation und Filterung von Oberschwingungen
Oberschwingungserfassung und - filterung
Stromversorgungen und Verbraucher besonderer Art
Solaranlagen
Wohngebäude und ähnliche Einsatzbereiche sowie besondere Orte und Bereiche
EMV-Richtlinien
Messung

Inhaltsverzeichnis


Abbildung J6 fasst die Hauptmerkmale von Stoßüberspannungen zusammen.

Art des Spannungs-
stoßes
Spannungsstoß-
koeffizient
Dauer Vorderseitige Steigung
oder Frequenz
Betriebsfrequenz
(Isolationsfehler)
≤ 1,7 Lang
30 bis 1000 ms
Betriebsfrequenz
(50-60-400 Hz)
Betrieb 2 bis 4 Kurz
1 bis 100 ms
Durchschnittlich
1 bis 200 kHz
Gewitter > 4 Sehr kurz
1 bis 100 μs
Sehr hoch
1 bis 1000 kV/μs

Abb. J5Hauptmerkmale von Spannungsstößen

Auswirkungen von Blitzeinschlägen

Drei Punkte sind zu berücksichtigen:

  • Ein direkter oder indirekter Blitzschlag kann bei elektrischen Anlagen, die einige Kilometer vom Ort des Blitzeinschlags entfernt sind, zu Zerstörungen führen.
  • Schaltüberspannungen verursachen ebenfalls erhebliche Schäden.
  • Die Tatsache, dass ein Anlagenstandort unterirdisch ist, schützt diesen nicht, obwohl zumindest die Gefahr eines direkten Blitzeinschlages begrenzt wird.

Ein Blitzstrom ist ein hochfrequenter elektrischer Strom. Ungeachtet dessen hat er die gleichen Auswirkungen wie jeder andere niederfrequente Strom in einem Leiter und verursacht erhebliche Auswirkungen durch Influenz und Spannungsstöße:

  • Thermische Auswirkungen: Schlägt ein Blitz in elektrisch gut leitendes Material, z.B. aus Eisen, Aluminium oder Kupfer, sind oft nur geringfügige Einschlagspuren zu erkennen. Anders ist es bei elektrisch schlecht leitenden Materialien, durch die der Blitzstrom unter starker Wärmefreisetzung fließt: Glas, Sand und dünne Drähte schmelzen bzw. verdampfen, und es kann aufgrund des Stromflusses zu Bränden kommen.
  • Elektrodynamische Auswirkungen: Fließen die Blitzströme in parallelen Leitern (z.B. in mehrdrähtigen Ableitern, für die aus diesen Gründen Massivleiter gefordert werden), erzeugen sie Anziehungs- oder Abstoßungskräfte zwischen den Drähten, wodurch Drahtbrüche oder mechanische Deformierungen entstehen.
  • Druckauswirkungen: Blitze können zu Luftausdehnungen und dadurch zu einem Überdruck führen, welcher sich auch noch in einigen 10 Metern entsprechend bemerkbar machen kann. Durch den explosionsartigen Druck zerbrechen Fenster oder Trennwände, und Tiere oder Menschen können mehrere Meter durch die Luft geschleudert werden. Diese Druckwelle macht sich gleichzeitig auch durch eine Schallwelle (Donner) bemerkbar.
  • Leitungsgebundene Stoßüberspannungen nach einem Blitzeinschlag in Freileitungen (Strom oder Telefon).
  • Stoßüberspannungen induzieren durch die elektromagnetischen Auswirkungen des Blitzkanals, der über mehrere Kilometer als Antenne wirkt, hohe Ströme. Es wächst dem sich bildenden Blitzkanal bei ausreichender Annäherung zum Erdboden aufgrund der Influenz eine negative Fangladung entgegen. Nachdem sich die beiden Blitzkanalteile getroffen haben, ist eine leitende Verbindung erstellt und es kommt zum Stromfluss, der den eigentlichen Blitzschlag bewirkt.
  • Die Anhebung des Erdpotentials durch das Fließen des Blitzstroms in der Erde, was Geräteausfälle durch Erhöhung der Stufenspannung als indirekte Folgen eines Blitzschlages erklärt.

Abb. J6aVerschiedene Arten von Blitzeinwirkungen

In allen Fällen, können die Auswirkungen auf die elektrische Installation innerhalb eines Gebäudes gravierend sein und erhebliche Schäden an den Geräten hervorrufen.

Blitzeinschlag in Gebäude ohne Blitzableiter Blitzeinschlag in Nähe einer Freileitung Blitzeinschlag in Nähe eines Gebäudes
DB422464 DE.svg DB422465 DE.svg DB422466 DE.svg
Der Blitzstrom fließt mit zerstörender Wirkung durch die leitenden Strukturen des Gebäudes:
  • Thermische Auswirkungen: Starke Überhitzung von Werkstoffen und dadurch Brandgefahr,
  • Mechanische Auswirkungen: Zerstörungen am Gebäude,
  • Blitzüberschlag: sehr gefährliche Erscheinung in der Nähe brennbarer oder explosiver Stoffe
Der Blitzstrom erzeugt Überspannungen durch elektromagnetische Einstrahlung auf das elektrische Installationssystem.

Diese Überspannungen fließen entlang der Einspeiseleitung und beeinflussen die angeschlossenen elektrischen Verbraucher innerhalb des Gebäudes.

Der Blitzstrom erzeugt Überspannungen durch elektromagnetische Einstrahlung auf das elektrische Installationssystem.

Zusätzlich steigt der Blitzstrom zwischen Potential und dem elektrischen Installationssystem an und ruft so Ausfälle von Betriebsmitteln hervor.

Zerstörungen am Gebäude und der elektrischen Installation innerhalb des Gebäudes Die an das elektrische Netz angeschlossenen Verbraucher als auch das elektrische Netz können zerstört werden

Abb. J6bAuswirkungen von Blitzeinschlägen

Schaltüberspannungen

Eine plötzliche Änderung der normalen Betriebsbedingungen in einem elektrischen Netz führt dazu, dass vorübergehende Erscheinungen auftreten. Das sind im Allgemeinen Stoßüberspannungen mit hochfrequenter oder gedämpfter Schwingung (siehe Abbildung J1), die normalerweise eine langsame Steigung haben: Ihre Frequenz schwankt zwischen einigen zehn und mehreren hundert Kilohertz.

Schaltüberspannungen können verursacht werden durch:

  • das Ziehen von Sicherungen unter Last, durch Öffnen von Schutzeinrichtungen (Leitungsschutzschalter, Leistungsschalter) und das Betätigen von Spulen in Steuerungsgeräten (Relais, Schütze usw.);
  • das Schalten induktiver Verbraucher z.B. Motoren, Zu- oder Abschalten von Transformatoren in MS/NS-Umspannstationen;
  • das Schalten kapazitiver Lasten, z.B. von Kondensatoren;
  • alle Geräte, die eine Spule, einen Kondensator oder Transformator an den Einspeiseklemmen enthalten: Relais, Schütze, Fernseher, Drucker, Computer, elektrische Öfen, Filter usw.

Transiente Überspannungen bei Betriebsfrequenz

(siehe Abb. J6c)

Diese Überspannungen haben die gleiche Frequenz wie das Netz (50, 60 oder 400 Hz) und können verursacht werden durch:

  • Isolationsfehler zwischen Außenleiter/Neutralleiter oder Außenleiter/Schutzleiter in einem Netzsystem mit einem isolierten oder einem durch eine Impedanz geerdeten Neutralleiter oder in geerdeten Systemen durch die Unterbrechung des Neutralleiters. Im Falle einer Unterbrechung des Neutralleiters bilden nun die Widerstände der Verbraucher an den einzelnen Außenleitern einen Spannungsteiler, wodurch sich das Potential des freien Sternpunktes verschiebt. So kann bei stark asymmetrischer Belastung nahezu die volle Leiterspannung von 400 V zwischen dem Neutralleiter und dem am geringsten belasteten Außenleiter auftreten, was zu Überspannungsschäden führt.
  • Fehler zwischen Hoch- und Niederspannungskabeln, z.B. wenn eine Mittelspannungsfreileitung auf eine Niederspannungsfreileitung fällt.
  • Lichtbogenbildung bei einer Höchst- oder Hochspannungs-Schutzfunkenstrecke, die einen Anstieg des Erdpotentials während der Betätigung der Schutzeinrichtungen verursacht.

Abb. J6cTransiente Überspannungen bei Betriebsfrequenz

Stoßüberspannungen durch elektrostatische Entladung

In trockener Umgebung können elektrische Ladungen auftreten und ein sehr starkes elektrostatisches Feld erzeugen. Eine Person, die z.B. mit Gummisohlen über einen Teppich läuft, wird elektrostatisch bis auf mehrere Kilovolt aufgeladen. Läuft diese Person in der Nähe leitfähiger, geerdeter Teile vorbei, z.B. einer Gebäudekonstruktion bzw. berührt sie diese, gibt sie innerhalb von wenigen Nanosekunden eine elektrische Ladung von mehreren Ampere frei. Handelt es sich um empfindliche Elektronik (z.B. einen Computer), die dabei berührt wird, können deren Bauelemente bzw. Steckkarten beschädigt werden.

Verschiedene Ausbreitungsarten

Gleichtakt

Gleichtakt-Spannungsstöße treten zwischen den stromführenden Teilen und Erde auf, z.B. zwischen Außenleiter und Schutzleiter oder Neutralleiter und Schutzleiter (siehe Abb. J7).

Abb. J7Gleichtakt

Sie sind besonders gefährlich für Geräte, deren Gehäusemasse aufgrund der Gefahr eines Körperschlusses geerdet ist.

Gegentakt

Gegentakt-Spannungsstöße treten zwischen stromführenden Leitern auf:

Außenleiter-Außenleiter oder Außenleiter-Neutralleiter (siehe Abb. J8).

Abb. J8 Gegentakt

Sie sind besonders gefährlich für elektronische Geräte, empfindliche Computeranlagen usw.